Linking diet switching to reproductive performance across populations of two critically endangered mammalian herbivores

0
Linking diet switching to reproductive performance across populations of two critically endangered mammalian herbivores
  • Kawecki, T. J. Adaptation to Marginal Habitats. Annu. Rev. Ecol. Evol. Syst. 39, 321–342 (2008).

    Article 

    Google Scholar 

  • Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. 106, 19659–19665 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pulliam, H. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).

    Article 

    Google Scholar 

  • Kendall, B. E., Fox, G. A., Fujiwara, M. & Nogeire, T. M. Demographic heterogeneity, cohort selection, and population growth. Ecology 92, 1985–1993 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Britnell, J. A., Zhu, Y., Kerley, G. I. H. & Shultz, S. Ecological marginalization is widespread and increases extinction risk in mammals. Proc. Natl Acad. Sci. 120, e2205315120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hardie, D. C. & Hutchings, J. A. Evolutionary ecology at the extremes of species’ ranges. Environ. Rev. 18, 1–20 (2010).

    Article 

    Google Scholar 

  • Kaszta, Ż., Cushman, S. A. & Macdonald, D. W. Prioritizing habitat core areas and corridors for a large carnivore across its range. Anim. Conserv. 23, 607–616 (2020).

    Article 

    Google Scholar 

  • Pironon, S. et al. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. 92, 1877–1909 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Santini, L., Pironon, S., Maiorano, L. & Thuiller, W. Addressing common pitfalls does not provide more support to geographical and ecological abundant-centre hypotheses. Ecography 42, 696–705 (2019).

    Article 

    Google Scholar 

  • Johnston, A. S. A. et al. Predicting population responses to environmental change from individual-level mechanisms: towards a standardized mechanistic approach. Proc. R. Soc. B Biol. Sci. 286, 20191916 (2019).

    Article 
    CAS 

    Google Scholar 

  • New, L. F. et al. Modelling the biological significance of behavioural change in coastal bottlenose dolphins in response to disturbance. Funct. Ecol. 27, 314–322 (2013).

    Article 

    Google Scholar 

  • Grueter, C. C. et al. Fallback foods of temperate-living primates: a case study on snub-nosed monkeys. Am. J. Phys. Anthropol. 140, 700–715 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Kitaysky, A. S., Kitaiskaia, E. V., Piatt, J. F. & Wingfield, J. C. A mechanistic link between chick diet and decline in seabirds? Proc. R. Soc. B Biol. Sci. 273, 445–450 (2006).

    Article 
    CAS 

    Google Scholar 

  • Ingala, M. R., Becker, D. J., Bak Holm, J., Kristiansen, K. & Simmons, N. B. Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecol. Evol. 9, 6508–6523 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faith, J. T. Palaeozoological insights into management options for a threatened mammal: southern Africa’s Cape mountain zebra (Equus zebra zebra). Divers. Distrib. 18, 438–447 (2012).

    Article 

    Google Scholar 

  • Hecker, L. J., Edwards, M. A. & Nielsen, S. E. Assessing the nutritional consequences of switching foraging behavior in wood bison. Ecol. Evol. 11, 16165–16176 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jesmer, B. R., Kauffman, M. J., Murphy, M. A. & Goheen, J. R. A test of the niche variation hypothesis. a Rumin. Herbiv. J. Anim. Ecol. 89, 2825–2839 (2020).

    Article 

    Google Scholar 

  • Staver, A. C. & Hempson, G. P. Seasonal dietary changes increase the abundances of savanna herbivore species. Sci. Adv. 6, eabd2848 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2, 369–404 (1971).

    Article 

    Google Scholar 

  • Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl Acad. Sci. 116, 23588–23593 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marshall, A. J., Boyko, C. M., Feilen, K. L., Boyko, R. H. & Leighton, M. Defining fallback foods and assessing their importance in primate ecology and evolution. Am. J. Phys. Anthropol. 140, 603–614 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Altmann, S. A. Fallback foods, eclectic omnivores, and the packaging problem. Am. J. Phys. Anthropol. 140, 615–629 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Kartzinel, T. R. & Pringle, R. M. Multiple dimensions of dietary diversity in large mammalian herbivores. J. Anim. Ecol. 89, 1482–1496 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Iason, G. R. & Villalba, J. J. Behavioral strategies of mammal herbivores against plant secondary metabolites: the avoidance–tolerance continuum. J. Chem. Ecol. 32, 1115–1132 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cooper, S. M., Owen-Smith, N. & Bryant, J. P. Foliage acceptability to browsing ruminants in relation to seasonal changes in the leaf chemistry of woody plants in a South African savanna. Oecologia 75, 336–342 (1988).

    Article 
    PubMed 

    Google Scholar 

  • Owen-Smith, N., Chafota, J. & Rachlow, J. Selective feeding by a megaherbivore, the African elephant (Loxodonta africana). J. Mammal. 93, 698–705 (2012).

    Article 

    Google Scholar 

  • Abraham, J. O., Hempson, G. P. & Staver, A. C. Drought-response strategies of savanna herbivores. Ecol. Evol. 9, 7047–7056 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lea, J., Kerley, G., Hrabar, H., Barry, T. & Shultz, S. Recognition and management of ecological refugees: a case study of the Cape mountain zebra. Biol. Conserv. 203, 207–215 (2016).

    Article 

    Google Scholar 

  • Kaczensky, P. et al. Stable isotopes reveal diet shift from pre-extinction to reintroduced Przewalski’s horses. Sci. Rep. 7, 5950 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferreira, S. M., Roex, Nle & Greaver, C. Species-specific drought impacts on black and white rhinoceroses. PLoS ONE 14, e0209678 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mackie, R. I. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr. Comp. Biol. 42, 319–326 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanning, I. & Diaz-Sanchez, S. The functionality of the gastrointestinal microbiome in non-human animals. Microbiome 3, 51 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Diet diversity is associated with beta but not alpha diversity of pika gut microbiota. Front. Microbiol. 7, 1169 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tracy, C. R. et al. The importance of physiological ecology in conservation biology. Integr. Comp. Biol. 46, 1191–1205 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Li, Y. et al. Characterization of intestinal microbiota and fecal cortisol, T3, and IgA in forest musk deer (Moschus berezovskii) from birth to weaning. Integr. Zool. 16, 300–312 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antwis, R. E., Edwards, K. I., Unwin, B., Walker, S. L. & Shultz, S. Rare gut microbiota associated with breeding success, hormone metabolites and ovarian cycle phase in the critically endangered eastern black rhino. Microbiome 7, 1–12 (2019).

    Article 

    Google Scholar 

  • Jiménez, R. R. & Sommer, S. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers. Conserv. 26, 763–786 (2017).

    Article 

    Google Scholar 

  • Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5, 14862 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whitecross, M. A., Witkowski, E. T. F. & Archibald, S. Savanna tree-grass interactions: a phenological investigation of green-up in relation to water availability over three seasons. South Afr. J. Bot. 108, 29–40 (2017).

    Article 

    Google Scholar 

  • Adole, T., Dash, J. & Atkinson, P. M. Large-scale prerain vegetation green-up across Africa. Glob. Change Biol. 24, 4054–4068 (2018).

    Article 

    Google Scholar 

  • Archibald, S. & Scholes, R. J. Leaf green-up in a semi-arid African savanna -separating tree and grass responses to environmental cues. J. Veg. Sci. 18, 583–594 (2007).

    Google Scholar 

  • Hesla, B. I., Tieszen, H. L. & Boutton, T. W. Seasonal water relations of savanna shrubs and grasses in Kenya, East Africa. J. Arid Environ. 8, 15–31 (1985).

    Article 

    Google Scholar 

  • Shorrocks, B. & Bates, W. Biology of African Savannahs Second Edition. (Oxford University Press, Oxford, 2014).

  • Milligan, P. D. et al. Mutualism disruption by an invasive ant reduces carbon fixation for a foundational East African ant-plant. Ecol. Lett. 24, 1052–1062 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Pansu, J. et al. The generality of cryptic dietary niche differences in diverse large-herbivore assemblages. Proc. Natl Acad. Sci. 119, e2204400119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buk, K. G. & Knight, M. H. Seasonal diet preferences of black rhinoceros in three arid South African National Parks. Afr. J. Ecol. 48, 1064–1075 (2010).

    Article 

    Google Scholar 

  • Cerling, T. E. et al. Stable isotope ecology of black rhinos (Diceros bicornis) in Kenya. Oecologia 187, 1095–1105 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Adcock, K., Amin, R. & Khayale, C. Habitat Characteristics and Carrying Capacity Relationships of 9 Kenyan Black Rhino Areas. (Kenya Wildlife Service, 2007).

  • Emslie, R., Amin, R. & Kock, R. Guidelines for the in Situ Re-Introduction and Translocation of African and Asian Rhinoceros. (IUCN Species Survival Commission, 2009).

  • Sundaresan, S. R., Fischhoff, I. R., Hartung, H. M., Akilong, P. & Rubenstein, D. I. Habitat choice of Grevy’s zebras (Equus grevyi) in Laikipia, Kenya. Afr. J. Ecol. 46, 359–364 (2008).

    Article 

    Google Scholar 

  • Kartzinel, T. R. et al. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc. Natl Acad. Sci. USA 112, 8019–8024 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Landman, M., Schoeman, D. & Kerley, G. Shift in black rhinoceros diet in the presence of elephant: evidence for competition? PLoS ONE 8, e69771 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barbosa, E. R. M. et al. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of Savanna tree species. PLoS ONE 9, e92619 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rubanza, C. D. K., Shem, M. N., Bakengesa, S. S., Ichinohe, T. & Fujihara, T. The content of protein, fibre and minerals of leaves of selected Acacia species indigenous to north-western Tanzania. Arch. Anim. Nutr. 61, 151–156 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abdulrazak, S. A., Fujihara, T., Ondiek, J. K. & Ørskov, E. R. Nutritive evaluation of some Acacia tree leaves from Kenya. Anim. Feed Sci. Technol. 85, 89–98 (2000).

    Article 
    CAS 

    Google Scholar 

  • Tan, J. et al. in Advances in Immunology (ed. Alt, F. W.) Vol. 121. 91–119 (Academic Press, 2014).

  • Debruyne, L., Gevers, D. & Vandamme, P. Taxonomy of the Family Campylobacteraceae. in Campylobacter (eds. Nachamkin, I., Szymanski, C. M. & Vandamme, P.) 1–25 (John Wiley & Sons, Ltd, 2008).

  • Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. MBio 9, e01294–18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Russell, W. & Duthie, G. Plant secondary metabolites and gut health: the case for phenolic acids. Proc. Nutr. Soc. 70, 389–396 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Odadi, W. O., Young, T. P. & Okeyo-Owuor, J. B. Effects of Wildlife on Cattle Diets in Laikipia Rangeland, Kenya. Rangel. Ecol. Manag. 60, 179–185 (2007).

    Article 

    Google Scholar 

  • Cerling, T. E., Wittemyer, G., Ehleringer, J. R., Remien, C. H. & Douglas-Hamilton, I. History of animals using isotope records (HAIR): a 6-year dietary history of one family of African elephants. Proc. Natl Acad. Sci. 106, 8093–8100 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MacArthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).

    Article 

    Google Scholar 

  • Crego, R. D. et al. Moving through the mosaic: identifying critical linkage zones for large herbivores across a multiple‐use African landscape. Landsc. Ecol. 36, 1325–1340 (2021).

    Article 

    Google Scholar 

  • O’Neill, H. M. K., Durant, S. M., Strebel, S. & Woodroffe, R. Fencing affects African wild dog movement patterns and population dynamics. Oryx 56, 128–136 (2022).

    Article 

    Google Scholar 

  • Harvey Sky, N. et al. Female reproductive skew exacerbates the extinction risk from poaching in the eastern black rhino. Proc. R. Soc. B Biol. Sci. 289, 20220075 (2022).

    Article 

    Google Scholar 

  • Birkett, A. The impact of giraffe, rhino and elephant on the habitat of a black rhino sanctuary in Kenya. Afr. J. Ecol. 40, 276–282 (2002).

    Article 

    Google Scholar 

  • Joppa, L. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venter, O. et al. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Kerley, G., Beest, M., te, Cromsigt, J. P. G. M., Pauly, D. & Shultz, S. The Protected Area Paradox and refugee species: the giant panda and baselines shifted towards conserving species in marginal habitats. Conserv. Sci. Pract. 2, e203 (2020).

    Article 

    Google Scholar 

  • Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Article 

    Google Scholar 

  • Britnell, J. A. et al. Species stereotypes as a result of unconscious research biases compromise conservation efficacy. Biol. Conserv. 261, 109275 (2021).

    Article 

    Google Scholar 

  • Kavwele, C. M., Kimanzi, J. K. & Kinyanjui, M. J. Impacts of bush encroachment on wildlife species diversity, composition, and habitat preference in Ol Pejeta Conservancy, Laikipia, Kenya. Int. J. Ecol. 2017, 1–6 (2017).

  • Giesen, W., Giesen, P. & Giesen, K. Habitat Changes at Lewa Wildlife Conservancy, Kenya. From Cattle Ranch to Conservation Area: Effects of Changing Management on Habitat from 1962–2006. (Lewa Wildlife Conservancy, 2007).

  • Winowiecki, L. A., Vågen, T.-G., Kinnaird, M. F. & O’Brien, T. G. Application of systematic monitoring and mapping techniques: assessing land restoration potential in semi-arid lands of Kenya. Geoderma 327, 107–118 (2018).

    Article 

    Google Scholar 

  • Odadi, W. O., Fargione, J. & Rubenstein, D. I. Vegetation, wildlife, and livestock responses to planned grazing management in an African pastoral landscape. Land Degrad. Dev. 28, 2030–2038 (2017).

    Article 

    Google Scholar 

  • Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Funk, C. Climate Hazards Group [Data set]. (2015).

  • Birkett, A. & Stevens‐Wood, B. Effect of low rainfall and browsing by large herbivores on an enclosed savannah habitat in Kenya. Afr. J. Ecol. 43, 123–130 (2005).

    Article 

    Google Scholar 

  • Meshesha, D. T., Ahmed, M. M., Abdi, D. Y. & Haregeweyn, N. Prediction of grass biomass from satellite imagery in Somali regional state, eastern Ethiopia. Heliyon 6, e05272 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • USGS. USGS FEWS NET Data Portal. (2020).

  • Owen-Smith, R. Megaherbivores: The Influence of Very Large Body Size on Ecology. (Cambridge University Press, Cambridge, 1992).

  • Law, P. R., Fike, B. & Lent, P. C. Mortality and female fecundity in an expanding black rhinoceros (Diceros bicornis minor) population. Eur. J. Wildl. Res. 59, 477–485 (2013).

    Article 

    Google Scholar 

  • Garnier, J., Bruford, M. & Goossens, B. Mating system and reproductive skew in the black rhinoceros. Mol. Ecol. 10, 2031–2041 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cain, B. et al. Sex‐biased inbreeding effects on reproductive success and home range size of the critically endangered black rhinoceros. Conserv. Biol. 28, 594–603 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Rubenstein, D. I. et al. The state of Kenya’s Grevy’s zebras and reticulated giraffes: Results of the Great Grevy’s Rally 2018. (The Great Grevy’s Rally, 2018).

  • Pauli, J. N., Whiteman, J. P., Riley, M. D. & Middleton, A. D. Defining noninvasive approaches for sampling of vertebrates. Conserv. Biol. 24, 349–352 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Murphy, M. A. et al. An evaluation of long-term preservation methods for brown bear (Ursus arctos) faecal DNA samples. Conserv. Genet. 3, 435–440 (2002).

    Article 
    CAS 

    Google Scholar 

  • Blekhman, R. et al. Common methods for fecal sample storage in field studies yield consistent signatures of individual identity in microbiome sequencing data. Sci. Rep. 6, 31519 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article 

    Google Scholar 

  • Posit Team. RStudio: Integrated Development for R. Posit Software (Posit Team, 2023).

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gill, B. A. et al. Plant DNA-barcode library and community phylogeny for a semi-arid East African savanna. Mol. Ecol. Resour. 19, 838–846 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Gill, B. A. et al. DS-UHURUR2 [Data set]. BOLD (2021).

  • McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deagle, B. E. et al. Counting with DNA in metabarcoding studies: how should we convert sequence reads to dietary data? Mol. Ecol. 28, 391–406 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Littleford-Colquhoun, B. L. et al. The precautionary principle and dietary DNA metabarcoding: commonly used abundance thresholds change ecological interpretation. Mol. Ecol. 31, 1615–1626 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Littleford-Colquhoun, B. L., Sackett, V. I., Tulloss, C. V. & Kartzinel, T. R. Evidence-based strategies to navigate complexity in dietary DNA metabarcoding: a reply. Mol. Ecol. 31, 5660–5665 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Holst, K. K. & Budtz-Jørgensen, E. Linear latent variable models: the lava-package. Comput. Stat. 28, 1385–1452 (2013).

    Article 

    Google Scholar 

  • Barnett, D. J., Arts, I. C. & Penders, J. microViz: an R package for microbiome data visualization and statistics. J. Open Source Softw. 6, 3201 (2021).

    Article 

    Google Scholar 

  • Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R. J. 8, 352 (2016).

    Article 

    Google Scholar 

  • Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2, 217–223 (2012).

  • Liu, C., Cui, Y., Li, X. & Yao, M. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97, fiaa255 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *